Exercises for Differential calculus in several variables. Bachelor Degree Biomedical Engineering
 Universidad Carlos III de Madrid. Departamento de Matemáticas

Chapter 4.3 Surface integrals

Problem 1. Compute the area of the following surfaces:
i) A sphere of radius R;
ii) A circular cone parametrized by $\mathbf{r}(u, v)=(u \cos v, u \sin v, u)$, where $0 \leq u \leq a$ and $0 \leq v \leq 2 \pi$.
iii) A piece of the paraboloid $z=x^{2}+y^{2}$ which lies within the cylinder $x^{2}+y^{2}=a^{2}$;
iv) A piece of the cylinder $x^{2}+z^{2}=16$ bounded by the cylinder $x^{2}+y^{2}=16$.

Solution: $i) 4 \pi R^{2}$; ii) $\pi a^{2} \sqrt{2}$; iii) $\left.\pi\left(\left(1+4 a^{2}\right)^{3 / 2}-1\right) / 6 ; i v\right) 128$.

Problem 2. Find the area of the surface of the sphere $x^{2}+y^{2}+z^{2}=a^{2}$ lying outside the cylinders $x^{2}+y^{2}= \pm a x$.

Solution: $8 a^{2}$.

Problem 3. i) Deduce the formula of the area of a surface of revolution obtained by rotating the graph of the function $y=f(x), 0<a \leq x \leq b$, around the vertical axis:

$$
A=2 \pi \int_{a}^{b} x \sqrt{1+\left(f^{\prime}(x)\right)^{2}} d x
$$

for the parametrization $\mathbf{s}(r, \theta)=(r \cos \theta, r \sin \theta, f(r))$, where $a \leq r \leq b$ and $0 \leq \theta \leq 2 \pi$.
ii) Give the area of the surface of the torus obtained by rotating the graph $(x-R)^{2}+y^{2}=c^{2}, 0<c<R$.
iii) Give the corresponding parametrization for an analogous formula in the case where the graph $y=$ $f(x), a \leq q x \leq b$, is rotated along the horizontal axis.

Solution: ii) $\left.\left.4 \pi^{2} R c ; i i i\right) \mathbf{s}(x, \theta)=(x, f(x) \cos \theta, f(x) \sin \theta)\right)$.

Problem 4. Consider a subset of \mathbb{R}^{3} given by $W=\left\{1 \leq z \leq\left(x^{2}+y^{2}\right)^{-1 / 2}\right\}$. Show that the volume of W is finite and that its boundary has infinite area.

Solution: $V=\pi$.

